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Genetic variation in the cellular response
of Daphnia magna (Crustacea: Cladocera)

to its bacterial parasite
Stuart K. J. R. Auld*, Jennifer A. Scholefield and Tom J. Little

School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Ashworth Labs,
West Mains Road, Edinburgh EH9 3JT, UK

Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major
goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular
immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite
Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a
spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by
Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid
cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic
variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance
in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were
found in the most susceptible hosts, indicating resistance is not always borne from a response that
destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus,
D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment
and a cellular response once establishment has begun.

Keywords: invertebrate immunity; haemocytes; host–parasite coevolution;
resistance; Daphnia, Pasteuria

1. INTRODUCTION
Parasites often impose substantial costs on their hosts, as
evidenced both by the severe effects they can have on
individuals, and in the impact they may have on host
population sizes (Van Alfen et al. 1975; Hudson et al.
1998; Duncan & Little 2007). Host defence mechanisms,
therefore make a key contribution to organismal fitness
and genetic variation for these mechanisms may contrib-
ute to host evolution in the face of parasitism. The first
line of defence for the invertebrate host often consists of
the barrier defences of the cuticle or more complex
defences of the gut epithelium (Artis 2008). After these
come the haemolymph-based immune defences, for
example, phagocytic haemocytes, antimicrobial peptides
or lysozymes (Hoffmann 2003; Mydlarz et al. 2006).
Much of our understanding of invertebrate immunity is
built on studies of insect–parasite systems, although
there are notable exceptions (Mydlarz et al. 2006). We
argue the importance of strengthening our knowledge of
invertebrate immunity beyond the insects, as well as the
need to develop deep understanding of the interplay
between naturally coevolving antagonists.

One of the goals of ecological immunology is to deter-
mine the role immunological mechanisms play in
mediating variation in fitness when organisms are exposed
to parasites. To address the function that immune
responses have in determining infection outcomes and,
ultimately, the fitness consequences of infection (or self-
harm owing to immunopathology), it is necessary to

measure how immune effector systems vary under genetic
and environmental variation. However, many studies
aiming to elucidate immune mechanisms have done so in
the absence of pathogens, under controlled laboratory con-
ditions and in homogeneous, inbred genetic backgrounds.
Thus, while providing the necessary mechanistic backbone
for studying the immune function, this approach does not
address variation in natural populations (Little et al. 2005).
However, a considerable body of evidence suggests that the
impact of genetic and environmental variation on infection
is substantial (Mydlarz et al. 2006; Lazzaro & Little 2009),
and it is thus difficult to extrapolate from laboratory
measures of immune responsiveness to variation in fitness
(Viney et al. 2005).

Here, we tested for a cellular immune response in a
naturally coevolving host–parasite model: the aquatic
crustacean, Daphnia magna and its sterilizing bacterial
endoparasite, Pasteuria ramosa. The fitness consequences,
for example, host sterilization or mortality due to P. ramosa
infection have been extensively studied under genetic
and environmental variation (Mitchell et al. 2005;
Duncan et al. 2006; Vale et al. 2008; Vale & Little
2009), but the mechanisms of resistance have received
less attention in this system (Mucklow & Ebert 2003;
Mucklow et al. 2004; Labbe et al. 2009). Circulating hae-
mocytes are an important anti-parasite defence in many
invertebrates (Ataev & Coustau 1999; Elrod-Erickson
et al. 2000; Kraaijeveld et al. 2001; Canesi et al. 2002;
Cotter et al. 2004), and have been found in D. magna
(Metchnikoff 1884). They are central to the innate
immune system, being involved in phagocytosis and
encapsulation; they are also vehicles for other immune* Author for correspondence (stuart.auld@ed.ac.uk).
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functions, e.g. the generation of reactive oxygen and
nitrogen species, as well as antimicrobial peptides and
phenoloxidase (Strand 2008). For these reasons, we
chose them as the immune marker for this study. Both
the induction of a cellular response and its magnitude
are likely to contribute to host fitness when the host is
in the presence of parasites.

This study also examines how the magnitude of cellu-
lar response varies across multiple host genotypes. By
embracing host genetic variation, we hope to gain further
insight into how parasitism could influence host genetic
structure, and ultimately, host evolution. We also test
how infection outcome differs across host genotypes,
allowing us to link our measures of cellular response
with susceptibility. Finally, we sought to determine
whether it is the mere presence of parasite spores in the
gut, or the process of spores moving from the gut to
haemolymph that elicits a cellular response in the host.

2. MATERIAL AND METHODS
(a) Host and parasite organisms

Daphnia magna is a freshwater crustacean of shallow,

eutrophic ponds. It reproduces by cyclical parthenogenesis,

where apomictic parthenogenesis is the main reproductive

mechanism, but bouts of sexual reproduction occur in the

presence of specific cues (Carvalho & Hughes 1983;

Hobaek & Larsson 1990; Slarsarczyk et al. 2005). By keeping

D. magna in the absence of sexual cues, purely clonal lines

can be maintained in the laboratory.

Pasteuria ramosa is a spore-forming, bacterial endopara-

site, obligate to D. magna. It is transmitted horizontally

from dead, infected hosts (Ebert et al. 1996), and is believed

to infect via the gut and proliferate in the host’s haemolymph.

Successful P. ramosa infections have a profound impact on

host fitness, often causing complete host sterilization and

premature death (Ebert et al. 1996).

Twelve of the 16 host genotypes used here were founded

from a single animal, hatched from an ephippium (sexually

produced resting egg) in the laboratory. Ephippia were

from pond mud collected in Gaazerfeld, Germany in 1997.

The other four genotypes (numbers 3, 4, 7 and 13) were

also founded from single individuals, but these were collected

as adults from Gaazerfeld in 1997 and have since been kept

in a state of clonal reproduction. The P. ramosa isolate origi-

nated from a single infected D. magna from that same pond

(Carius et al. 2001), and has been used in a variety of exper-

iments since that time. The P. ramosa spore solution used

here was made by homogenizing previously infected hosts

with ddH2O.

(b) Experimental set-up

Independent replicates for each D. magna genotype were

maintained for three generations to minimize variation in

condition. Animals were kept in jars containing 200 ml of

artificial medium (Kluttgen et al. 1994) modified using

one-twentieth of the recommended SeO2 concentration

(Ebert et al. 1998) and fed 5.0 ABS Chlorella vulgaris algal

cells per day (ABS is the optical absorbance of 650 nm

white light by the Chlorella culture). Their medium was

refreshed three times per week. There were five Daphnia

per jar and jars were incubated at 208C on a 12L : 12D

light cycle. The second-clutch neonates from the third

generation were used in each of the four experiments.

The first experiment examined host cellular response in

four host clones or genotypes. For this four-genotype cell

experiment, replicates were allocated to one of two parasite

treatments: non-exposed or parasite-exposed. Parasite treat-

ment lasted for 2 h, 4 h, 6 h or 8 h. Thus, there were six

replicates per genotype, per parasite treatment, per time

treatment. The second and third experiments both studied

16 genotypes: the second experiment examined host cellular

response and the third experiment measured infection out-

come. Like the previous four-genotype cell experiment,

replicates were allocated to one of two parasite treatments

(non-exposed or parasite-exposed), however all replicates

were exposed for the same amount of time: 5 h. There

were six and twelve replicates per parasite treatment, per

genotype for the second and third experiment, respectively.

Finally, a fourth experiment used one genotype (genotype

4 from the previous experiment) to test for the presence of

a cellular response when the host was exposed to killed

(non-infective) spores or live (infective) spores. Spores were

killed by heating them in a water bath at 958C for 30 min.

Replicates were allocated to three treatments: non-exposed

and parasite-exposed, and exposed to killed parasites.

There were eight replicates per treatment.

Parasite exposures were carried out as follows. When at

least three out of five of the Daphnia in a replicate had depos-

ited eggs in their brood chamber, the replicate was exposed to

its parasite treatment. The five Daphnia of the replicate were

placed together in a well of a 24-well cell plate (Costar,

Corning Inc., NY, USA). Parasite-exposed replicates received

50 000 P. ramosa spores from the pre-prepared solution. Non-

exposed control replicates received the same concentration

of uninfected D. magna homogenized in ddH2O.

(c) Haemocyte collection and counting

After parasite treatment, five Daphnia from each replicate

were placed in a cell extraction chamber containing 4.0 ml
of ice-cold anticoagulant buffer (98 mM NaOH, 186 mM

NaCl, 17 mM EDTA and 41 mM citric acid, pH adjusted

to 4.5: Lavine et al. 2005). A 25-guage needle (BD Micro-

lance, Drogheda, Ireland) was used to pierce the Daphnia

heart, causing haemolymph to pool into the medium. The

Daphnia were then removed and the haemolymph solution

was mixed thoroughly using a pipette. Four microlitres of

the cell suspension were placed in a fertility counting

chamber (0.001 mm2 ! 0.100 mm (depth); Hawksley,

Lancing, Sussex, UK), and the number of amoeboid

haemocytes was counted (figure 1). The number of

granulocytes did not vary between treatments in any of the

cell experiments and are not discussed further. Haemocyte

counts were converted to number of cells per microlitre of

haemolymph–buffer solution.

(d) Life-history assays

After parasite treatment, one of the five Daphnia from each

replicate of the 16-clone life-history experiment was ran-

domly selected and kept individually in 60 ml of artificial

medium and fed 1.0 ABS C. vulgaris cells per day. Their

medium was refreshed three times per week, or after the

Daphnia had a clutch of offspring, and jars were incubated

at 208C on a 12L : 12D light cycle. Jars were checked daily

for clutches and the number of offspring was recorded at

each clutch. From day 25 post-parasite exposure, hosts

were examined for symptoms of P. ramosa infection. Symp-

toms include cessation of reproduction, absence of ovaries
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and bacterial growth in the haemolymph. The experiment

ran for 32 days.

(e) Statistical analyses

Data were analysed using R (Ihaka & Gentleman 1996;

R Development Core Team 2005). To achieve normality of

distribution in the data, haemocyte counts were log-trans-

formed for the four genotype and 16-genotype cell

experiments and square-root transformed for the killed para-

site cell experiment. For the four-genotype cell experiment,

we tested the fixed effects of host genotype, parasite treat-

ment and exposure time, as well as all interaction terms.

For the 16-genotype cell experiment, we tested the fixed

effects of host genotype and parasite exposure along with

their interaction. Welch’s two sample t-tests were performed

post hoc on the 16-genotype cell data to test for the presence

of a significant cellular response in each of the host geno-

types, and the results were corrected for multiple

comparisons (Holm 1979). For the killed parasite exper-

iment, we tested for differences between parasite–exposure

treatments.

We report the full statistical models for both the four-gen-

otype and 16-genotype cell data, along with the proportion of

the variance explained by each of the terms in the full model.

Variance proportions were calculated by dividing the sequen-

tial sum of squares for each term by the total sum of squares

for the model. We then multiplied these proportions by 100

to find the percentage variance explained by each term.

3. RESULTS
(a) Four-genotype cell experiment

Haemocyte counts were obtained from 240 Daphnia from
48 jars. Averaging across all genotypes, mean circulating
haemocyte number per microlitre from the P. ramosa-
exposed replicates was 599+80 (n ¼ 24), whereas
control replicates had a mean of 196+11 circulating
haemocytes (n ¼ 24). However, the magnitude of the
parasite-induced cellular response depended on the iden-
tity of the host genotype: i.e. there was a parasite exposure
by host genotype interaction (figure 2 and table 1). When
genotype is coded as a random effect, parasite exposure
remains significant (F1,3 ¼ 15.26, p , 0.05), and a

model with the parasite exposure-by-genotype effect
explained significantly more variation than did a
model without the interaction term (x2 ¼ 4.60, d.f. ¼ 1,
p , 0.05).

(b) 16-genotype cell experiment

Haemocyte counts were obtained from 960 Daphnia from
192 jars. As before, a cellular response followed P. ramosa
exposure, with a mean per microlitre haemocyte count
that was highly consistent with the previous experiment:
614+50 cells for P. ramosa-exposed replicates (n ¼ 96)
and 208+17 haemocytes per microlitre for control jars
(n ¼ 96). Basal haemocyte counts differed across host
genotypes (F15,80 ¼ 4.49, p , 0.001); and, there was
also considerable genetic variation in the magnitude of
cellular response, varying between a one and ninefold
increase in haemocyte number depending on the identity
of the host genotype (figure 3). Statistically, this appears
as a strong parasite exposure by host genotype interaction
(table 2). The three host genotypes that mounted the
strongest cellular response were the three genotypes that
suffered infection from P. ramosa (figure 3). Again, the
parasite treatment remains significant with genotype as
a random effect (F1,15 ¼ 27.76, p , 0.0001), and the
parasite exposure-by-genotype effect explained signifi-
cantly more variation than did a model without the
interaction term (x2 ¼ 32.86, d.f. ¼ 1, p , 0.0001).

Post hoc tests revealed a significant cellular response,
i.e. that the number of circulating haemocytes was greater
in exposed versus unexposed in the following five host
genotypes: 3, 4, 17, 20 and 22 (figure 3). This was after
the data were corrected using the sequential Bonferroni
adjustment (Holm 1979). Of these five responding
genotypes, three suffered infection from P. ramosa (3, 4
and 17).

(c) 16-genotype life-history experiment

Successful infection was recorded in three of the 16 gen-
otypes, where infection with P. ramosa caused a
substantial reduction in the number of offspring produced
by the Daphnia. Of replicates from the parasite-exposed
treatment, uninfected hosts had 48.05+0.78 offspring,
whereas infected hosts had 32.21+1.15 offspring
(t ¼ 11.35, d.f. ¼ 47.61, p , 0.0001).

(d) Killed parasite cell experiment

Haemocyte counts were obtained from 120 Daphnia from
24 jars. The strongest cellular response followed exposure
to live parasite spores, with a mean haemocyte count
of 584+83 haemocytes per microlitre for live
P. ramosa-exposed jars (n ¼ 8) and 65+13 for control
jars (n ¼ 8). There was also a smaller but significant
cellular response from jars exposed to heat-treated
P. ramosa spores: 238+30 haemocytes (n ¼ 8). Post hoc
tests revealed that haemocyte counts from all treatments
were significantly different from each other (Tukey’s
HSD, p, 0.05). Only jars exposed to live P. ramosa
spores went on to develop infection (data not shown).

4. DISCUSSION
Just hours after exposure to the bacterial parasite
P. ramosa, there was a large increase in the number
of amoeboid cells circulating in the haemolymph of

Figure 1. Differential interference contrast image of an
amoeboid haemocyte from D. magna. Scale bar, 5 mm.
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D. magna. These data also revealed very large differences
in cellular response between host genotypes, ranging from
no increase to a greater-than ninefold increase in cell
number (figures 2 and 3). Basal (uninduced) haemocyte
counts did differ across host genotypes, but these differ-
ences did not predict the likelihood of becoming
infected. This differs from the finding that Drosophila
melanogaster with a greater basal haemocyte level were
more resistant to parasitoid infection (Kraaijeveld et al.
2001). Non-infective parasite spores (i.e. those we heat-
killed prior to exposure) elicited a small increase in the
number of circulating haemocytes, suggesting that the
presence of parasite material in the gut may trigger
weak immune reactions; perhaps bacterial ligands are
penetrating the gut mucosa and triggering an immune
response (Raz 2010). However, data from the killed-
spore experiment clearly show that live infective spores
induce a much stronger cellular response.

This cellular response is possibly the host immune
response that the parasite encounters when it passes
from the host gut into its body, supporting very early
work showing D. magna mounts a cellular response to a
yeast-like infection (Metchnikoff 1884). Immune func-
tion and immunity, however, are clearly not one and the

same: the largest increase in cell numbers was seen in
the host genotypes that were susceptible to the parasite
(figure 3). Other studies of putative immune responses
found no link between infection status and strength of
the response (e.g. Mucklow et al. 2004). If the cellular
immune response to P. ramosa depends upon the parasite
spores passing the gut epithelium, complete resistance
appears to be achieved by preventing that passage (as
opposed to destroying parasites once they have gained
access). A very strong cellular response thus appears to
be indicative of a critical failure elsewhere in the host
immune system (most likely in the gut epithelium), and
it appears that the gut epithelium forms the main defence.

The P. ramosa infection process may be similar to that
seen in Pasteuria penetrans, a sterilizing parasite that
initiates infections by attaching to the heparin-binding
domain and gelatine-binding domain proteins on the
cuticle of Meloidogyne nematodes (Sayre & Starr 1985;
Mohan et al. 2001; Schmidt et al. 2008). The external
surface of the nematode encounters P. penetrans as it
migrates through the soil, whereas P. ramosa is thought
to be taken up as the D. magna filter feed where it then
penetrates the gut. Aside from this difference in the
location of infection, P. ramosa may similarly require
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Figure 2. Haemocyte counts per host in P. ramosa-exposed and control D. magna (filled and open symbols, respectively; n ¼ 6
and each replicate consists of five Daphnia). Error bars are 1 s.e.m. See table 1 for statistical details.

Table 1. Summary of analysis of the number of circulating haemocytes in an experiment involving four host genotypes of
D. magna. The effects tested were parasite (exposed or not), time post-exposure and host genotype.

number of haemocytes d.f. F p % var a

time 3 2.18 0.09 2.19
parasite 1 61.31 ,0.0001 20.57
genotype 3 11.13 ,0.0001 11.2
time ! parasite 3 1.82 0.14 1.84
time ! genotype 9 1.09 0.37 3.29
parasite ! genotype 3 4.02 ,0.01 4.05
time ! parasite ! genotype 9 1.05 0.40 3.18
error 160 53.69

aPercentage of the total variance explained by each term in the full model.
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binding to epithelial proteins to initiate infection, and
without this binding the infection process, subsequent
cellular response will not occur. The probability of mol-
ecular binding to D. magna epithelial proteins appears
to be subject to host genetic variation; or, there is vari-
ation in other gut-based defences. We propose that a
lack of molecular matching explains cases of resistance,
while a strong cellular response indicates a molecular gen-
etic match that allows parasites to overcome gut defences.
This heuristic model of a two-tiered defence is largely
supported by the observation that the three susceptible
host genotypes had the strongest cellular responses,
while the majority of non-responding genotypes remained
healthy (figure 3). Still, two host genotypes responded to
parasite exposure but showed no signs of infection, which
indicates that the cellular immune response may only play
a limited role in resistance, if only a very small number of
spores reach the haemolymph.

Previous work has modelled the genetics of infection
as a two-stage process, with ‘matching-allele’ genetics
for parasite detection, and ‘gene-for-gene’ genetics for
parasite eradication (Agrawal & Lively 2003). Daphnia
magna’s patterns of resistance and cellular responses to
P. ramosa can be used to test such models. Thus, a
desirable follow-up study to the present work comparing
host genotypes would be experiments incorporating both
host and parasite genetic variation (sensu Carius et al.
2001), as well as with parasites from other taxa, where
a cellular response may successfully provide resistance.
Studies of such genetic specificity and the cellular
response would be the next step towards elucidating
the immunological basis of invertebrate coevolutionary
interactions.

A substantial body of work in invertebrate immunology
has studied the response to opportunistic bacteria, gener-
alist entomopathogens or chemical pathogen mimics (e.g.
LPS); and there are considerable merits in measuring
immune function in non-coevolved systems (Barnes &
Siva-Jothy 2000), primarily that the parasite has not had
the opportunity to evolve avoidance of host immune
responses (Huxham et al. 1988; Barnes & Siva-Jothy
2000). By adopting such an approach one can better
assess the generality of a host’s immune function without
the confounding influence of anti-parasite defence mech-
anisms. Conversely, our use of a naturally coevolving
host–parasite combination means the cellular response
we document reflects how invertebrates defend them-
selves against natural enemies. Indeed, outside of
the well-studied interaction between mosquitoes and
Plasmodium parasites, we have little understanding of
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Figure 3. Fold induction of haemocyte numbers in P. ramosa-exposed D. magna (n ¼ 6, each replicate consists of five Daphnia),
relative to unexposed D. magna (n ¼ 6, each replicate consists of five Daphnia). The bold line at y ¼ 1 shows the uninduced
(basal) level. The inset shows the proportion of individuals that became infected in P. ramosa-exposed treatments in each
genotype (n ¼ 12, each replicate consists of an individual Daphnia). Asterisks indicate if haemocyte numbers rose significantly
(after sequential Bonferroni adjustment) above basal levels: ** p, 0.01, *** p, 0.001.

Table 2. Summary of analysis of the number of circulating
haemocytes in an experiment involving 16 host genotypes of
D. magna. The effects tested were parasite (exposed or not)
and host genotype.

number of haemocytes d.f. F p % vara

parasite 1 157.29 ,0.0001 28.53
genotype 15 9.72 ,0.0001 26.67
parasite ! genotype 15 5.67 ,0.0001 15.54
error 160 29.26

aPercentage of the total variance explained by each term in the full
model.
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the invertebrate immune response to coevolving
biological enemies. Thus, in the study of invertebrate
immunity, our work is a rare example of the (putative)
immune response and genetic variation for that response,
against a natural parasite.

It is now widely acknowledged that a stronger immune
response does not necessarily lead to higher fitness—the
relationship between host fitness and both size of
immune response and parasite burden may not be linear
(Adamo 2004; Viney et al. 2005; Stjernman et al. 2008).
Our work is a compelling example of this point: had we
measured only haemocyte responsiveness without asses-
sing infection probabilities (and hence fitness), a
misleading impression of which is the fittest genotype
would have emerged. This argues against the practice
(common in the early days of ecological immunology) of
measuring immune parameters in isolation from infection
biology. Moreover, the large differences in cellular response
between host genotypes emphasizes the need to embrace
genetic variation when studying immune function. Had
we looked for a cellular response in just one host genotype,
our results would very much depend on which genotype
we studied. For example, a study of host genotype 3
would lead to opposite conclusions to a study of genotype
18. This makes clear the need to effectively link studies of
immune function to studies of infection outcome in mul-
tiple host genotypes. That being so, the next stage is to
investigate the role of parasite genetic variation: both how
it modifies cellular response in different host genotypes,
and how this links to infection outcome.

We would like to thank P. Wilson and C. Schoebel for
assistance in the laboratory, S. Babayan, A. Graham,
A. Moynihan, J. Koella and two anonymous reviewers for
comments on the manuscript. S. Auld was funded by
NERC and T. Little was funded by the Wellcome Trust.

REFERENCES
Adamo, S. A. 2004 How should behavioural ecologists

interpret measurements of immunity? Anim. Behav. 68,
1443–1449. (doi:10.1016/j.anbehav.2004.05.005)

Agrawal, A. F. & Lively, C. M. 2003 Modelling infection as
a two-step process combining gene-for-gene and
matching-allele genetics. Proc. R. Soc. Lond. B 270,
323–334. (doi:10.1098/rspb.2002.2193)

Artis, D. 2008 Epithelial-cell recognition of commensal bac-
teria and maintenance of immune homeostasis in the gut.
Nat. Rev. Immunol. 8, 411–420. (doi:10.1038/nri2316)

Ataev, G. L. & Coustau, C. 1999 Cellular response to
Echinostoma caproni infection in Biomphalaria glabrata
strains selected for susceptibility/resistance. Dev.
Comp. Immunol. 23, 187–198. (doi:10.1016/S0145-
305X(99)00023-3)

Barnes, A. I. & Siva-Jothy, M. T. 2000 Density-dependent
prophylaxis in the mealworm beetle Tenebrio molitor
L. (Coleoptera: Tenebrionidae): cuticular melanization
is an indicator of investment in immunity. Proc. R. Soc.
Lond. B 267, 177–182. (doi:10.1098/rspb.2000.0984)

Canesi, L., Gallo, G., Gavioli, M. & Pruzzo, C. 2002
Bacteria–hemocyte interactions and phagocytosis in
marine bivalves. Microsc. Res. Tech. 57, 469–476.
(doi:10.1002/jemt.10100)

Carius, H. J., Little, T. J. & Ebert, D. 2001 Genetic variation
in a host–parasite association: potential for coevolution
and frequency-dependent selection. Evolution 55,
1136–1145.

Carvalho, G. R. & Hughes, R. N. 1983 The effect of food
availability, female culture density and photoperiod on
ephippia production in Daphnia magna (Crustacea:
Cladocera). Freshw. Biol. 13, 37–46. (doi:10.1111/
j.1365-2427.1983.tb00655.x)

Cotter, S. C., Kruuk, L. E. B. & Wilson, K. 2004 Costs of
resistance: genetic correlations and potential trade-offs
in an insect immune system. J. Evol. Biol. 17, 421–429.
(doi:10.1046/j.1420-9101.2003.00655.x)

Duncan, A. B. & Little, T. J. 2007 Parasite-driven genetic
change in a natural population of Daphnia. Evolution 61,
796–803. (doi:10.1111/j.1558-5646.2007.00072.x)

Duncan, A. B., Mitchell, S. E. & Little, T. J. 2006 Parasite-
mediated selection and the role of sex and diapause
in Daphnia. J. Evol. Biol. 19, 1183–1189. (doi:10.1111/
j.1420-9101.2006.01085.x)

Ebert, D., Rainey, P., Embley, T. M. & Scholz, D. 1996
Development, life cycle, ultrastructure and phylogenetic
position of Pasteuria ramosa Metchnikoff 1888:
rediscovery of an obligate endoparasite of Daphnia
magna Straus. Phil. Trans. R. Soc. Lond. B 351, 1689–
1701. (doi:10.1098/rstb.1996.0151)

Ebert, D., Zschokke-Rohringer, C. D. & Carius, H. J. 1998
Within- and between-population variation for resistance
of Daphnia magna to the bacterial endoparasite Pasteuria
ramosa. Proc. R. Soc. Lond. B 265, 2127–2134. (doi:10.
1098/rspb.1998.0549)

Elrod-Erickson, M., Mishra, M. & Schneider, D. 2000
Interactions between the cellular and humoral immune
responses in Drosophila. Curr. Biol. 10, 781–784.
(doi:10.1016/S0960-9822(00)00569-8)

Hobaek, A. & Larsson, P. 1990 Sex determination in
Daphnia magna. Ecology 71, 2255–2268. (doi:10.2307/
1938637)

Hoffmann, J. A. 2003 The immune response in Drosophila.
Nature 426, 33–38. (doi:10.1038/nature02021)

Holm, S. 1979 A simple sequential rejective multiple test
procedure. Scand. J. Stat. 6, 65–70.

Hudson, P. J., Dobson, A. P. & Newborn, D. 1998 Preven-
tion of population cycles by parasite removal. Science
282, 2256–2258. (doi:10.1126/science.282.5397.2256)

Huxham, I. M., Lackie, A. M. & McCorkindale, N. J. 1988
Inhibitory effects of cyclodepsipeptides, destixins from
the fungus Metarhizium anisopliae on cellular immunity
in insects. J. Insect Physiol. 35, 97–105. (doi:10.1016/
0022-1910(89)90042-5)

Ihaka, R. & Gentleman, R. 1996 R: a language for
data analysis and graphics. J. Comput. Graph. Stat. 5,
299–314. (doi:10.2307/1390807)

Kluttgen, B. U., Dulmer, U., Engels, M. & Ratte, H. T. 1994
ADaM, an artificial freshwater for the culture of
zooplankton. Water Res. 28, 743–746. (doi:10.1016/
0043-1354(94)90157-0)

Kraaijeveld, A. R., Limentani, E. C. & Godfray, H. C. J. 2001
Basis of the trade-off between parasitoid resistance and
larval competitive ability in Drosophila melanogaster. Proc. R.
Soc. Lond. B 268, 259–261. (doi:10.1098/rspb.2000.1354)

Labbe, P., McTaggart, S. J. & Little, T. J. 2009 An ancient
immunity gene duplication in Daphnia magna: RNA
expression and sequence analysis of two nitric oxide
synthase genes. Dev. Comp. Immunol. 33, 1000–1010.
(doi:10.1016/j.dci.2009.04.006)

Lavine, M. D., Chen, G. & Strand, M. R. 2005 Immune
challenge differentially affects transcript abundance of
three antimicrobial peptides in hemocytes from the
moth Pseudoplusia includens. Insect Biochem. Mol. Biol.
35, 1335–1346. (doi:10.1016/j.ibmb.2005.08.005)

Lazzaro, B. P. & Little, T. J. 2009 Immunity in a variable
world. Phil. Trans. R. Soc. B 364, 15–26. (doi:10.1098/
rstb.2008.0141)

6 S. K. J. R. Auld et al. Cellular response in Daphnia magna

Proc. R. Soc. B

 on June 10, 2010rspb.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1016/j.anbehav.2004.05.005
http://dx.doi.org/doi:10.1098/rspb.2002.2193
http://dx.doi.org/doi:10.1038/nri2316
http://dx.doi.org/doi:10.1016/S0145-305X(99)00023-3
http://dx.doi.org/doi:10.1016/S0145-305X(99)00023-3
http://dx.doi.org/doi:10.1098/rspb.2000.0984
http://dx.doi.org/doi:10.1002/jemt.10100
http://dx.doi.org/doi:10.1111/j.1365-2427.1983.tb00655.x
http://dx.doi.org/doi:10.1111/j.1365-2427.1983.tb00655.x
http://dx.doi.org/doi:10.1046/j.1420-9101.2003.00655.x
http://dx.doi.org/doi:10.1111/j.1558-5646.2007.00072.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01085.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01085.x
http://dx.doi.org/doi:10.1098/rstb.1996.0151
http://dx.doi.org/doi:10.1098/rspb.1998.0549
http://dx.doi.org/doi:10.1098/rspb.1998.0549
http://dx.doi.org/doi:10.1016/S0960-9822(00)00569-8
http://dx.doi.org/doi:10.2307/1938637
http://dx.doi.org/doi:10.2307/1938637
http://dx.doi.org/doi:10.1038/nature02021
http://dx.doi.org/doi:10.1126/science.282.5397.2256
http://dx.doi.org/doi:10.1016/0022-1910(89)90042-5
http://dx.doi.org/doi:10.1016/0022-1910(89)90042-5
http://dx.doi.org/doi:10.2307/1390807
http://dx.doi.org/doi:10.1016/0043-1354(94)90157-0
http://dx.doi.org/doi:10.1016/0043-1354(94)90157-0
http://dx.doi.org/doi:10.1098/rspb.2000.1354
http://dx.doi.org/doi:10.1016/j.dci.2009.04.006
http://dx.doi.org/doi:10.1016/j.ibmb.2005.08.005
http://dx.doi.org/doi:10.1098/rstb.2008.0141
http://dx.doi.org/doi:10.1098/rstb.2008.0141
http://rspb.royalsocietypublishing.org/


Little, T. J., Hultmark, D. & Read, A. F. 2005 Invertebrate
immunity and the limits of mechanistic immunology.
Nat. Immunol. 6, 651–654. (doi:10.1038/ni1219)

Metchnikoff, I. 1884 A disease of Daphnia caused by a yeast.
A contribution to the theory of phagocytes as agents for
attack on disease-causing organisms. In Milestones in
microbiology (ed. T. Brock), pp. 132–138. Washington,
DC: American Society for Microbiology.

Mitchell, S. E., Rogers, E. S., Little, T. J. & Read, A. F. 2005
Host–parasite and genotype-by-environment interactions:
temperature modifies potential for selection by a sterilizing
pathogen. Evolution 59, 70–80.

Mohan, S., Fould, S. & Davies, K. G. 2001 The interaction
between the gelatin-binding domain of fibronectin and
the attachment of Pasteuria penetrans endospores to nema-
tode cuticle. Parasitology 123, 271–276.

Mucklow, P. T. & Ebert, D. 2003 Physiology of immunity in
the water flea Daphnia magna: environmental and genetic
aspects of phenoloxidase activity. Physiol. Biochem. Zool.
76, 836–842. (doi:10.1086/378917)

Mucklow, P. T., Vizoso, D. B., Jensen, K. H., Refardt, D. &
Ebert, D. 2004 Variation in phenoloxidase activity
and its relation to parasite resistance within and between
populations of Daphnia magna. Proc. R. Soc. Lond. B
271, 1175–1183. (doi:10.1098/rspb.2004.2707)

Mydlarz, L. D., Jones, L. E. & Harvell, C. D. 2006 Innate
immunity, environmental drivers and disease ecology of
marine and freshwater invertebrates. Annu. Rev. Ecol.
Evol. Syst. 37, 251–288. (doi:10.1146/annurev.ecolsys.
37.091305.110103)

R Development Core Team 2005 R: a language and environ-
ment for statistical computing. Vienna, Austria: R foundation
for statistical computing.

Raz, E. 2010 Mucosal immunity: aliment and ailments.
Mucosal Immunol. 3, 4–7. (doi:10.1038/mi.2009.123)

Sayre, R. M. & Starr, M. P. 1985 Pasteuria penetrans
(ex Thorne 1940) nom. rev., comb. n. sp. n. a mycelial
endospore-forming bacterium parasitic in plant-parasitic
nematodes. Proc. Helminthological Soc. Wash. 52, 149–165.

Schmidt, L. M., Mouton, L., Nong, G., Ebert, D. & Preston,
J. 2008 Genetic and immunological comparison of the
cladoceran parasite Pasteuria ramosa with the nematode
parasite Pasteuria penetrans. Appl. Environ. Microbiol. 74,
259–264. (doi:10.1128/AEM.01778-07)

Slarsarczyk, M., Dawidowicz, P. & Rygielska, E. 2005 Hide,
rest or die: a light-mediated diapause response in Daphnia
magna to the threat of fish predation. Freshw. Biol. 50,
141–146.

Stjernman, M., Raberg, L., Nilsson, J.-A. & Buckling, A.
2008 Maximum host survival at intermediate parasite
infection intensities. PLoS ONE 3, e2463. (doi:10.1371/
journal.pone.0002463)

Strand, M. R. 2008 The insect cellular immune response.
Insect Sci. 15, 1–14.

Vale, P. F. & Little, T. J. 2009 Measuring parasite fitness
under genetic and thermal variation. Heredity 103, 102–
109. (doi:10.1038/hdy.2009.54)

Vale, P. F., Stjernman, M. & Little, T. J. 2008 Temperature
dependant costs of parasitism and the maintenance of
polymorphism under genotype-by-environment inter-
actions. J. Evol. Biol. 21, 1418–1427. (doi:10.1111/j.
1420-9101.2008.01555.x)

Van Alfen, N. K., Jaynes, R. A., Anagnostakis, S. L. & Day,
P. R. 1975 Chestnut blight: biological control by
transmissable hypovirulence in Endothia parasitica. Science
189, 890–891. (doi:10.1126/science.189.4206.890)

Viney, M. E., Riley, E. M. & Buchanan, K. L. 2005
Optimal immune responses: immunocompetence
revisited. Trends Ecol. Evol. 20, 665–669. (doi:10.1016/
j.tree.2005.10.003)

Cellular response in Daphnia magna S. K. J. R. Auld et al. 7

Proc. R. Soc. B

 on June 10, 2010rspb.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1038/ni1219
http://dx.doi.org/doi:10.1086/378917
http://dx.doi.org/doi:10.1098/rspb.2004.2707
http://dx.doi.org/doi:10.1146/annurev.ecolsys.37.091305.110103
http://dx.doi.org/doi:10.1146/annurev.ecolsys.37.091305.110103
http://dx.doi.org/doi:10.1038/mi.2009.123
http://dx.doi.org/doi:10.1128/AEM.01778-07
http://dx.doi.org/doi:10.1371/journal.pone.0002463
http://dx.doi.org/doi:10.1371/journal.pone.0002463
http://dx.doi.org/doi:10.1038/hdy.2009.54
http://dx.doi.org/doi:10.1111/j.1420-9101.2008.01555.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2008.01555.x
http://dx.doi.org/doi:10.1126/science.189.4206.890
http://dx.doi.org/doi:10.1016/j.tree.2005.10.003
http://dx.doi.org/doi:10.1016/j.tree.2005.10.003
http://rspb.royalsocietypublishing.org/

	Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite
	Introduction
	Material and methods
	Host and parasite organisms
	Experimental set-up
	Haemocyte collection and counting
	Life-history assays
	Statistical analyses

	Results
	Four-genotype cell experiment
	16-genotype cell experiment
	16-genotype life-history experiment
	Killed parasite cell experiment

	Discussion
	We would like to thank P. Wilson and C. Schoebel for assistance in the laboratory, S. Babayan, A. Graham, A. Moynihan, J. Koella and two anonymous reviewers for comments on the manuscript. S. Auld was funded by NERC and T. Little was funded by the Wellcome Trust.
	REFERENCES


